Страница:
7 из 71
Такого рода рассуждения совершенно корректно можно применить к любым пустым множества и сделать обобщающий вывод, что пустое множество включено в любое множество, в том числе и в себя.
Оцените математическую красоту фразы:
Любой элемент, принадлежащий множеству, не содержащему ни одного элемента, принадлежит и любому другому множеству, которое не содержит ни одного элемента.
Чуть менее красива фраза:
Любое множество является собственным подмножеством.
Или то же самое, но более жестоко:
Любое множество включено само в себя.
Действительно, группа ух-002 (в которой, вполне возможно, есть студенты) включена в группу ух-002, поскольку все студенты, которые в ней числятся по-прежнему числятся в ней, даже если ее название ух-002 упоминается несколько раз.
Из последнего примера можно сделать важный вывод. Если два множества (возможно на первый взгляд различные, вроде множества чиновников и множества слуг народа) включены друг в друга, то эти множества равны – то есть состоят из одних и тех же элементов.
Можно сказать чуть иначе: Если два множества являются подмножествами друг друга, то они состоят из одних и тех же элементов.
А как же иначе?!…
Правда, есть математики-диссиденты, которые это не признают. Но это скорее уже вопрос веры… другой математической конфессии…
А теперь следует признать, что математики сродни той категории больных людей, которых называют «правдоискателями».
|< Пред. 5 6 7 8 9 След. >|