Страница:
247 из 257
Наша модельобъясняет, почему не сбывались прогнозы, построенные на основе линейных моделей.
Кроме того, аналогичные модели мы построили для других бессточных водоёмов – для Мёртвого моря, для озёр Балхаш, Большое Солёное, Чаны, Чад и так далее. И везде мы получили то же самое. И основным общим, характерным свойством всех этих решений является бимодальность гистограмм. Пожалуйста, покажите рисунок 3 по теме 2. Все эти гистограммы – бимодальные. Сверху Каспийское море, потом озеро Чад, потом Мёртвое море.
Теперь, почему не сбывались эти прогнозы? Потому что линейная модель имеет только один устойчивый уровень состояния. И каждый переход воспринимает как чрезвычайно редкое событие с очень малой вероятностью. Линейные модели использовались, конечно, для обоснования переброски северных рек. И используются, возможно, и сейчас тоже для каких-то целей.
Кроме того, мы рассчитали показатели Харста для приращения уровня Каспийского моря и стока Волги. Сток Волги занимает 80 процентов от стоков всех рек, впадающих в Каспийское море. Мы получили близкие значения. Затем мы рассчитали эти показатели для некоторых объектов бассейна Каспийского моря – температуры воды в Астрахани, в Казани, среднегодовых значений температур. Тоже получили показатель Харста больше, чем одна вторая. То есть это такая система, которая характеризуется нелинейными свойствами.
В.Н. Я хотел сказать, что есть эффект, который родственен эффекту Харста и дополняет его.
|< Пред. 245 246 247 248 249 След. >|