Диалоги (ноябрь 2003 г.)   ::   Гордон Александр

Страница: 16 из 256

И это было одной из причин, почему со временем наступило разочарование в идеях Гамильтона и его последователей.

Где же нашелся выход? Выход нашелся в том, чтобы эту алгебру «удвоить», то есть каждую из ее компонент считать комплексной. Тогда мы естественно переходим к алгебре, содержащей преобразования Лоренца в качестве симметрии; но удивительным образом она оказывается тогда 8-мерной. И только в каком-то определенном подпространстве этого 8-мерного пространства, оказывается, действует геометрия нашего мира. Есть другие «срезы» и другие отвечающие им геометрии. Куда девать эти лишние измерения? Это очень долго было загадкой. И для меня, когда я начинал, это было загадкой. Сейчас я знаю примерный ответ на этот вопрос: они нужны; они нужны для того, чтобы в этом мире могли существовать нетривиальные физические поля и частицы-особенности – об этом позже.

Давайте поговорим теперь о том, что же такое сам по себе алгебродинамический подход? С чего он начался?

В теории функций комплексного переменного есть т.н. условия дифференцируемости, которые называются уравнениями Коши-Римана. Обычно их проходили раньше в университете в курсе теории функций комплексного переменного. Эти «условия аналитичности» представляют собой очень простые линейные дифференциальные уравнения.

Много попыток предпринималось для того, чтобы обобщить эти условия, эти уравнения, на алгебры больших размерностей, в частности, на алгебры типа кватернионов.

|< Пред. 14 15 16 17 18 След. >|

Java книги

Контакты: [email protected]