Страница:
22 из 256
А потом можно, если хотите, забыть саму теорию и сказать, что у нас есть такие (сложные и интересные) решения уравнений Максвелла. Давайте посмотрим с вами.
Начнем, скажем, с рисунка № 2. Посмотрите, пожалуйста: в начальный момент времени вы имеете электромагнитное поле, которое везде, кроме этого вот кольца, удовлетворяет уравнениям Максвелла. Более того: для теоретиков (если, может быть, кто-то из них слушает), я могу сказать, что не только уравнениям Максвелла, а и более сложным (известным в физике) уравнениям, скажем, уравнениям Янга-Миллса удовлетворяет. Это вообще очень необычно.
Но это решение принципиально не статическое, то есть это только поле (и его особенности) в начальный момент. А потом оно начинает развиваться, опять-таки по уравнениям Максвелла, и особенность начинает изменяться. Это кольцо становится тором. Тор постепенно увеличивается в размере, «дырочка» в конце концов закрывается, и потом он «самопересекается», продолжая при этом расширяться (он же «прозрачный», это же не материальный «плотный» объект в прямом смысле слова). И получается в итоге такая (изображенная на рисунке) «тыква». Вот такой интересный пример двумерной сингулярности. Причем, эта двумерная сингулярность получается из одномерной (из кольца).
Давайте посмотрим теперь рисунок № 3 – еще один пример. Вот, пожалуйста: пример решения с сингулярностью, состоящей из двух (скрещенных) колец. (Здесь надо сказать, что это не совсем точный рисунок, эти кольца на самом деле одномерны, они не имеют толщины.
|< Пред. 20 21 22 23 24 След. >|