ПОИСКИ ИСТИНЫ   ::   Мигдал А.

Страница: 198 из 302

Уравнение Шрёдингера легко получается из уравнения для волн де Бройля, в которое входит слагаемое р2\psi, - надо только заменить в нем импульс р на р (r). Наверное, подобные соображения и помогли Шрёдингеру найти это замечательное уравнение.

Оказалось, что решение уравнения Шрёдингера для атома водорода получается в согласии с правилами квантования Бора не для всех энергий, а только для дискретных значений, совпадающих с теми, которые следовали из боровских правил. Объяснились многие детали устройства атомов, которые не объяснялись постулатами Бора. Стал ясен и смысл правила квантования - оно означает, что в области движения электрона должно укладываться целое число волн де Бройля. Но об этом мы подробно поговорим еще в следующих разделах и даже найдем решения упрощенного уравнения Шрёдингера для разных случаев.

За несколько месяцев до Шрёдингера Вернер Гейзенберг предложил другой вариант квантовой теории. Он, исходя из принципа наблюдаемости, представил величины как совокупность всех возможных амплитуд перехода из одного состояния квантовой системы в другие. Сама вероятность перехода пропорциональна квадрату амплитуды, точнее, квадрату модуля амплитуды - это уточнение для тех, кто знаком с комплексными числами. Именно такие амплитуды перехода и наблюдаются на опыте. В таком представлении каждая величина имеет два значка, определяющих начальное и конечное состояния системы. Эти величины называются «матрицами».

|< Пред. 196 197 198 199 200 След. >|

Java книги

Контакты: [email protected]