Страница:
202 из 302
Вокруг центрального пятна чередуются концентрические темные и светлые кольца, быстро убывающие по интенсивности.
Загибание световых лучей легко увидеть, если закрыть почти полностью свет лампочки линейкой, держа ее на вытянутой руке. Линейка покажется выщербленной в том месте, где проходит свет. Звуковые волны гораздо длиннее световых, и поэтому звук легко огибает препятствия.
Так как с электроном связан волновой процесс, аналогичная дифракционная картина получится и при прохождении через отверстие пучка электронов. В момент прохождения отверстия поперечная направлению пучка координата электрона будет определена с точностью \del q~d, где d - диаметр отверстия.
Что будет по другую сторону экрана? По законам дифракции после прохождения отверстия получится пучок волн всех направлений, лежащих внутри дифракционного угла \teta=\lambda/d. Но теперь \lambda - это длина волны электрона \lambda = 2 \pi h/ p, где р - импульс электрона в падающем пучке. Отклонение электрона от прежнего направления после прохождения отверстия означает, что электрон получил импульс отдачи \del р в поперечном направлении, причем
Подставляя выражение для \lambda и заменяя d на \del q, получим опять соотношение Гейзенберга. Проделав большое число таких мысленных экспериментов с тем же результатом, нельзя не прийти к заключению, что мы имеем дело с принципиальным ограничением, которое природа накладывает на понятия координаты и импульса частицы. Этого ограничения не знала классическая физика - оно не вносит изменений в описание больших тел из-за малости h.
|< Пред. 200 201 202 203 204 След. >|