ПОИСКИ ИСТИНЫ   ::   Мигдал А.

Страница: 212 из 302

Закроем заслонкой одно из отверстий - тогда электрон идет обязательно через другое, и на его волновую функцию заслонка не влияет. Обозначим эту функцию через \psi_1. Перенесем заслонку на другое отверстие и обозначим

новую функцию через \psi_1. Если оба отверстия открыты, волновая функция \psi равна сумме \psi_1 и \psi_2: \psi=\psi_1+\psi_2. Вероятность найти электрон в какой-либо точке пластинки будет

Если в какой-либо точке Ф1 и ф2 равны, мы получим вероятность Р = 4 abs(\psi_1)^2 = 4P_1, а если они отличаютсд по знаку, то Р = 0 - в эти места электроны не попадают. Если отверстия будут открыты попеременно, будут складываться вероятности, а не волновые функции. Соответствующая вероятность будет

Интерференция исчезнет, величины Р, и Рг-положительные и друг друга не погашают. Эти простые формулы поясняют то, что мы получили и без них.

Мы видим, что любая попытка уточнить траекторию, отбирая случаи, когда электрон проходит через одно отверстие, уничтожает интерференцию. Опять и в этом случае наблюдение, сделанное в Москве, как будто влияет на результаты опытов в Париже.

Кроме того, есть еще одна, не меньшая на первый взгляд, странность: после каждого измерения волновая функция изменяется скачком. В самом деле, после измерения импульса отдачи скачком появилась волна с новым импульсом. В этом состоянии до падения на пластинку электрон можно было с одинаковой вероятностью найти в любом месте; после почернения неопределенность его положения скачком за ничтожное время изменилась, - теперь она задается размерами зерна.

|< Пред. 210 211 212 213 214 След. >|

Java книги

Контакты: [email protected]