Страница:
220 из 302
Следующая стадия - получение точных количественных соотношений с помощью математического аппарата теории - целиком опирается на первую. Не имея предположительного проекта решения, без качественного анализа нельзя приступать к поискам точного результата. Действительно, удается доказать только те утверждения, которые были заранее угаданы. Из этого правила почти не бывает исключений. Анри Пуанкаре писал: «Догадка предшествует доказательству. Нужно ли указывать, что именно так были сделаны все важные открытия?»
Один из главных элементов качественного анализа - решение задачи на упрощенных моделях, в которых отброшено все несущественное, - усложнять решенную задачу несравненно проще, чем сразу решать сложную.
Размерные оценки
В некоторых случаях многое проясняет простой размерный анализ - размерные оценки входящих в задачу величин и возможные соотношения между ними. Докажем, например, теорему Пифагора из размерных сообра
жений. Из размерности следует, что площадь прямоугольного треугольника можно записать как квадрат гипотенузы с2, умноженный на некую функцию угла f (а) (пусть для определенности а есть угол между гипотенузой с и большим из катетов). То же самое относится к площадям двух подобных прямоугольных треугольников, для которых гипотенузами будут катеты а и b исходного треугольника, а его высота, опущенная из прямого угла, есть общий катет. Поэтому
Сокращая на f (а), получаем теорему Пифагора.
Оценим период колебан-ий маятника.
|< Пред. 218 219 220 221 222 След. >|