ПОИСКИ ИСТИНЫ   ::   Мигдал А.

Страница: 237 из 302

Для нашего осциллятора можно считать координатой напряженность электрического поля в средней точке, и роль скорости при этом будет играть магнитное поле, величина которого пропорциональнаскорости изменения электрического поля. Вспомните пример колебательного контура, где потенциальная энергия осциллятора была пропорциональна квадрату заряда конденсатора, то есть квадрату электрического поля, а кинетическая энергия - квадрату магнитного поля в катушке.

Ясно, что к этому осциллятору применимы те же принципы квантования, что и к любому другому. А раз так, то энергия нашей стоячей волны может изменяться порциями h \omega.

Если расстояние между экранами l, то для основного тона имеем:

Ведь длина волны связана с периодом Т соотношением \lambda = сТ, а период связан с частотой со по формуле Т = 2\pi/\omega.

Если волна находится в состоянии с п = 0 (наинизшее состояние), то говорят, что между экранами нет квантов. Если же волна перешла в состояние с n = 1, то говорят, что появился один квант с длиной волны\lambda = 21.

Аналогичный результат можно получить и для любого обертона, когда на расстоянии / укладывается m полуволн. Если nm-номер возбужденного состояния га-той волны, то говорят, что имеется nm квантов с длиной волны \lambdaт = 21/т. Таким образом, номер обертона, определяющего длину волны, задает сорт квантов (квант сданной длиной волны), а номер возбуждения nm дает число квантов данного типа. Обычно принято характеризовать кванты не длиной волны, а величиной, которая называется «волновым вектором».

Эта величина просто связана с длиной волны: k=2\pi/\lambda(\omega=ck).

Рассмотрим теперь бегущую волну.

|< Пред. 235 236 237 238 239 След. >|

Java книги

Контакты: [email protected]