Страница:
252 из 257
, а также числа b*2, b*4,b*8 и т. д., однако она никогда не напечатает число а*4 (поскольку машина Ма никогда не напечатает число 4) или число b*3 (поскольку машина Мb никогда не напечатаем число 3).
Далее, поскольку машина U имеет свою собственную программу, то, следовательно, она входит в семейство программируемых машин М1 М2…, Мn… Это значит, что существует некоторая машина Мь номер программы которой k совпадает с номером программы машины U, причем машина М* и есть сама машина U! (В строгой научной статье я указал бы, что это за число k.)
Можно заметить, что наша универсальная машина Mk наблюдает в числе прочих и за своим собственным поведением. Поэтому, как только машина Мk напечатает число n, она должна напечатать число k* n, а значит, и число k*(k*n), а также и число k*[k*(k* n)] и т. д.
Другой важной особенностью этих машин является то, что, имея произвольную машину Мa, мы всегда можем запрограммировать другую машину Mb, таким образом, чтобы она печатала в точности такие числа х, при которых машина Мa, печатает числа х* х. (Машина Mb, так сказать, «следит» за машиной Мa и действует но такой команде: напечатать число х после того, как машина Мa напечатает число х*х.) Можно, наконец, закодировать программы так, что для каждого а таким числом b окажется число 2а; тогда для каждого а машина М2а будет печатать в точности такие числа х, при которых машина Мa печатает числа х*х. Представим себе, что мы так и устроили, и запишем два основных утверждения, на которые будем опираться в дальнейшем.
|< Пред. 250 251 252 253 254 След. >|