Страница:
27 из 133
А это побольше четверти метра.
— Сегодня же пойду и проверю, — сердито сказал президент.
Все так и покатились со смеху!
— Вернёмся, однако, к фонтану, — сказал Олег, когда мы успокоились.
— "Вот и фонтан, она сюда придёт!" — продекламировал Сева. (Он очень любит читать стихи. Особенно Пушкина.)
— Перестань, — остановила его Таня. — Если фонтан и площадь — подобные треугольники, как утверждает Магистр, то и соответственные углы у них должны быть одинаковы. А уж двух тупых углов у треугольника вообще быть не может.
— А ещё, — добавил Сева, — зря Магистр назвал фонтан пифагоровым треугольником. Во-первых, треугольник со сторонами 3, 4 и 8 метров уже не пифагоров, а во-вторых… во-вторых, такого треугольника вообще не существует!
Президент посмотрел на него подозрительно.
— Можно подумать, ты знаком со всеми треугольниками на свете!
— Зачем со всеми? Достаточно знать, что сумма двух любых сторон треугольника всегда больше третьей. А 3+4, как известно, равно семи. Так что третья сторона не может быть равна восьми. Понятно?
Но президент не унимался. Он хотел знать, что такое пифагоров треугольник и почему его называют ещё египетским.
— "Почему, почему"… — отмахнулся Сева. — Что я тебе — справочное бюро?
— Египетским треугольником называют треугольник со сторонами 3, 4 и 5, — пояснил Олег. — Это единственный прямоугольный треугольник, стороны которого равны трём последовательным целым числам.
|< Пред. 25 26 27 28 29 След. >|