Путевые заметки Рассеянного Магистра (Рассеянный Магистр - 2) :: Левшин Владимир
Страница:
35 из 133
Видимо, президента уже утомила чересчур интенсивная умственная деятельность, и он довольно вяло воспринял замечание Севы о том, что охотник, встреченный Магистром, никак не мог быть энтомологом, потому что охотился на зверей, а энтомолог - специалист по насекомым.
Между тем Сева заслуживал большего внимания: он прекрасно решил задачу о пойманных охотником зверях, приняв число жирафов за единицу, а число муравьедов за икс. И так как жирафов было больше, чем утконосов, во столько же раз, во сколько утконосов больше, чем муравьедов, то вышло, что утконосов было x^2. Ну, а всего зверей в семь раз больше, чем жирафов. Следовательно, 1+x+x^2=7. Отсюда x+x^2=6.
Оставалось подумать, какое же число, сложенное со своим квадратом, может быть равно шести. Только двойка! 2+2^2=6. Тот же ответ можно получить, если решить по всем правилам квадратное уравнение x+x^2-6=0.
Итак, Сева убедительно доказал, что жирафов было вдвое больше, чем муравьедов, а муравьедов вдвое больше, чем утконосов. А так как Магистр знал, что жирафов было 10, то ясно, что муравьедов охотник поймал 20, а утконосов 40. А всего зверей оказалось 70. Но самое смешное, что, решив задачу. Сева тут же указал на ее бессмысленность, потому что, оказывается, ни муравьеды, ни утконосы в Африке не водятся...
Разбором двух последних ошибок Магистра занялся Олег.
- Допускаю, - сказал он, - что Магистр мог по карте принять озеро Чад за прямоугольник и даже на глазок прикинуть, что стороны его равны 120 и 240 километрам. Но вот назвать сумму сторон прямоугольника не периметром, а параметром это уж ни в какие ворота не лезет! Ведь параметр-постоянная величина, которая может, впрочем, иметь в различных случаях разные значения. Вот, например, в полете - космический корабль.
|< Пред. 33 34 35 36 37 След. >|