В поисках похищенной марки   ::   Левшин Владимир Артурович

Страница: 114 из 194

 — Не найдётся ли у них какого-нибудь общего признака?

— Найдётся! — отвечал президент весьма язвительно. — Все цифры у них разные.

— Цифры действительно разные, — подтвердила Таня, — зато сумма этих цифр одна и та же: 12.

— Верно! — обрадовался Нулик. — 1+6+5=12. И 7+3+2 тоже равно двенадцати. Может быть, то же свойство было и у всех других чисел на верблюжьих табличках?

— Очень возможно. Недаром Единичка сказала, что погонщики в Террапантере — народ справедливый.

— И всё-таки… — Нулик сделал непреклонное лицо, — всё-таки я требую доказательства.

— Сей момент, ваше президентство! — насмешливо поклонилась Таня. — Будет сделано. Запишем любое трехзначное число в общем виде. Это 100a+10b+c. Понятно?

— Что за вопрос? Конечно! Здесь a — число сотен, b — число десятков, c — число единиц.

— Гениально! Теперь сделаем в этом числе все возможные перестановки цифр. Напишем их сразу столбиком, а потом сложим:



100a+10b+с

100a+10c+b

100b+10а+с

100b+10с+а

100c+10a+b

100c+10b+a

—.

200(a+b+c)+20(a+b+c)+2(a+b+c)



Не желаете ли, ваше президентство, преобразовать эту сумму? — спросила Таня.

— Желаю, — отвечал его президентство без особого энтузиазма. — Я бы… я бы вынес 2(a+b+c) за скобки.

— Совершенно с вами согласна. Получится при этом

2(a+b+c)(100+10+1).

— А это все равно что 222(a+b+c), — подсчитал Нулик. — Но что из этого следует?

— Только то, что сумма перестановок зависит не от самого числа, а от суммы его цифр.

|< Пред. 112 113 114 115 116 След. >|

Java книги

Контакты: [email protected]