Страница:
157 из 194
— Явное нарушение! — не выдержал президент. — Во-первых, решать задачу с помощью линейки по условию нельзя, а во-вторых, полукруг должен быть золотой.
— Во-первых, — весело передразнила Таня, — обойдёшься и нарисованным полукругом. Во-вторых, к решению я ещё только приступаю. Значит, так. Требуется отделить от полукруга часть, равновеликую квадрату, сторона которого равна радиусу полукруга.
— А это и есть квадратура круга! — запрыгал на одной ножке Нулик.
— Так думает Магистр, — возразила Таня. — И он, как всегда, неправ. В задаче о квадратуре круга требуется заменить равновеликим квадратом весь круг. Мы же должны заменить квадратом всего лишь часть круга.
— Все равно, — не унимался президент, — значит, это частичная квадратура круга.
— Скорее, наоборот, — поправил я, — не частичная квадратура, а квадратура части круга. И если полный круг заменить равновеликим квадратом немыслимо, то хитро выделенную часть круга в квадрат превратить можно. Это и собирается доказать нам Таня.
Таня отмерила циркулем расстояние от конца диаметра до его середины.
— Все видят, что расстояние между ножками циркуля равно радиусу полукруга? — спросила она.
— Все видят, — сказал Нулик.
Тогда Таня воткнула иглу циркуля в левый конец диаметра и, повернув циркуль против хода часовой стрелки, засекла карандашом небольшую дугу.
|< Пред. 155 156 157 158 159 След. >|