Страница:
36 из 194
— Что ещё?
— Но применим ли он во всех случаях жизни? Вот вопрос…
— Об этом после, а пока давай рассказывай.
Нулик откашлялся
— Леди и джентльмены, прошу внимания. Возьмём два последовательных нечётных числа: например, 15 и 17. Насколько я понимаю в арифметике, произведение их равно 255. Так? Теперь прибавим единицу. Что мы имеем? 256. Извлечём из 256 квадратный корень. Это всегда было и будет 16. А теперь сравните-ка ответ с заданными числами: 15 и 17. Что вы замечаете? Вы замечаете, что 16 есть среднее арифметическое между 15 и 17, то есть число, которое заключено между ними.
— Гениально! Я бы до такого нипочём не додумался! — уверял Сева.
Нулик сиял как медный грош, но скромность и преданность научным интересам заставили его снова обратиться к слабой стороне своего научного открытия.
— Хотел бы я знать, годится ли способ Единички для десяти — или двадцатизначных чисел?
— Так это же легко проверить, — сказал Олег.
— Что ты! — испугался Нулик. — Перемножать в уме такие огромные числа!
— Зачем перемножать? Просто решим задачу в общем виде. Обозначим первое из двух нечётных чисел буквой a. Тогда второе число будет a+2 — ведь каждое следующее нечётное число больше предыдущего на 2. Теперь перемножим эти числа. Получим a(a+2). Затем прибавим к этому 1. Получим a(a+2)+1. И. наконец, извлечём из всего этого квадратный корень: sqrt(a(a+2)+1). Вот и все, — закончил Олег.
|< Пред. 34 35 36 37 38 След. >|