Страница:
68 из 194
Сева хотел уже обратиться за помощью ко мне, но тут, как и можно было ожидать, поднялся Олег.
— Милостивая принцесса, позвольте и мне, вашему покорному Бригелле, сказать своё слово. Может быть, моё решение придётся вам по вкусу.
Он соединил середины всех четырех сторон четырехугольника и получил ещё один четырехугольник.
— Обратите внимание, полученная мною фигура ничто иное, как параллелограмм. В этом легко убедиться, если провести хотя бы одну диагональ в большом четырехугольнике.
И действительно, Олег провёл диагональ, и всё стало ясно. Диагональ разделила фигуру на два треугольника, и проведённые ранее отрезки оказались средними линиями этих двух треугольников. А средняя линия треугольника, как известно, не только равна половине основания, Но и параллельна ему. Значит, противоположные стороны маленького четырехугольника равны между собой и параллельны, и, стало быть, перед нами параллелограмм.
— Далее, — продолжал Бригелла. — Средняя линия, как мы тоже знаем, отделяет от треугольника новый, меньший треугольник, площадь которого равна одной четверти большого. Поэтому, отрезав от всей фигуры два противолежащих треугольничка и соединив их равными сторонами, получим четырехугольник, равный по площади одной четверти всей фигуры. Ну, а то, что эта новоиспечённая фигура подобна большому четырехугольнику, доказать нетрудно. Уверен, что все присутствующие сумеют это сделать без моей помощи.
|< Пред. 66 67 68 69 70 След. >|