Страница:
175 из 242
Отсюда следует, что все лошади одной масти, т.е. предположение, что P ( k ) влечет за собой P ( k + 1). Но ранее мы уже показали, что предположение Р (1) выполняется всегда, значит, Р справедливо для любого k и все лошади имеют одинаковую масть.
Следствие I
Все предметы имеют одинаковую окраску.
Доказательство
В доказательстве леммы 1 никак не используется конкретная природа рассматриваемых объектов. Поэтому в утверждений «если Х – лошадь, то все Х имеют одинаковую окраску» можно заменить «лошадь» на «нечто» и тем самым доказать следствие. (Можно, кстати, заменить «нечто» на «ничто» без нарушения справедливости утверждения, но этого мы доказывать не будем.)
Следствие II
Все предметы белого цвета.
Доказательство
Если утверждение справедливо для всех X , то при подстановке любого конкретного Х оно сохраняет свою справедливость. В частности, если Х – слон, то все слоны одинакового цвета. Аксиоматически достоверным является существование белых слонов (см. Марк Твен, Похищение белого слона). Следовательно, все слоны белого цвета. Тогда из следствия I вытекает следствие II, что и требовалось доказать!
Теорема
Александр Великий не существовал.
Доказательство
Заметим для начала, что историки, очевидно, всегда говорят правду (поскольку они всегда ручаются за свои слова и поэтому, следовательно, не могут лгать).
|< Пред. 173 174 175 176 177 След. >|