Страница:
32 из 1568
Для иллюстрации воспользуемся словами Е.Вигнера из доклада "Непостижимая эффективность математики в естественных науках".
"Встретились как-то раз два приятеля, знавшие друг друга со студенческой скамьи, и разговорились о том, кто чем занимается. Один из приятелей стал статистиком и работал в области прогнозирования изменения численности народонаселения. Оттиск одной из своих работ статистик показал бывшему соученику. Начиналась работа, как обычно, с гауссова распределения. Статистик растолковал своему приятелю смысл используемых в работе обозначений для истинных показателей народонаселения, для средних и т.д. Приятель был немного привередлив и отнюдь не был уверен в том, что статистик его не разыгрывает.
– Откуда тебе известно, что все обстоит именно так, а не иначе? – спросил он. – А это что за символ?
– Ах, это, – ответил статистик. – Это число π.
– А что оно означает?
– Отношение длины окружности к ее диаметру.
– Ну, знаешь, говори, да не заговаривайся, – обиделся приятель статистика. – Какое отношение имеет численность населения к длине окружности?" [73, с. 182] .
Подобных примеров можно привести в изобилии, и неясность связи современных концепций со старо-рациональными не всегда обусловлена только тем, что соединительная цепочка умозаключений длинна. Упомянутая неясность порой принципиальна. Так, кстати, обстоит дело в самой арифметике. С тех пор как К.Гёдель доказал в 1931 г.
|< Пред. 30 31 32 33 34 След. >|