Страница:
92 из 1568
На скотном дворе две лошади, три коровы, семь свиней и пять скамеек. Сколько крупных животных? – Пять. Сколько парнокопытных (к таковым относятся коровы и свиньи)? – Десять. Сколько животных? – Тринадцать. Сколько инвентарных единиц, т.е. предметов вообще? – Восемнадцать. Одна и та же ситуация описывается разными числами в зависимости от того, под каким углом рассматривается, какие таксоны мы выделяем. Ныне подобная обстоятельность выродилась до поговорки-совета "не складывай корову с лошадью". Столь тривиальное отступление потребовалось, дабы избежать недоразумений в дальнейшем.
Теперь мы, вероятно, достаточно оснащены, чтобы приступить к конкретным исследованиям культуры и общества и, возможно, в состоянии пережить без наркоза встречу с сугубо математическим разделом. Впрочем, напоследок парочка замечаний. В Предисловии шла речь о рациональном бессознательном современного человека, и последнее связывалось со всеобщим школьным образованием, в котором львиную долю занимают математические и математикоподобные дисциплины. Теперь уместно обратить внимание на следующий нюанс.
О.Шпенглер имел все основания указывать на различный стиль математик разных веков и цивилизаций и на тесную внутреннюю связь этого стиля с характером мышления, философии, мировоззрения, см. выше цитату о "стиле души". Разностилевыми, в частности, являются математика античности, с одной стороны, и Нового времени, с другой.
|< Пред. 90 91 92 93 94 След. >|