Физика   ::   Аристотель

Страница: 263 из 288



Таким же способом следует возразить тем, которые выдвигают рассуждение Зенона и полагают, что если всегда сначала надо пройти половину, а число половин бесконечно, то бесконечного пройти нельзя; или тем, которые формулируют это же рассуждение иначе, утверждая, что вместе с движением надо отсчитывать половину каждой возникающей половины, так что, пройдя все расстояние, приходится сосчитать бесконечное число, а это, по общему признанию, невозможно.

В наших первых рассуждениях о движении мы разрешили [этот вопрос], исходя из того, что время заключает в себе бесконечное множество [частей]; ибо нет ничего нелепого, если в бесконечное время кто-нибудь пройдет бесконечное множество; ведь бесконечность одинаково присуща и длине и времени. Но такое решение достаточно для ответа тому, кто так поставил вопрос (спрашивалось ведь, можно ли в конечное [время] пройти или сосчитать бесконечно многое), однако для сути дела и для истины недостаточно. Если кто-нибудь оставит в стороне длину и вопрос о возможности пройти в конечное время бесконечное [множество] и попытается применить это [рассуждение] к самому времени (ведь время заключает в себе бесконечное множество делений), то приведенное решение уже не будет достаточным, но правильно будет сказать то именно, о чем мы говорили немного выше.

В самом деле, если кто-либо делит непрерывную [линию] на две половины, тот пользуется одной точкой как двумя, так как он делает [эту точку] началом и концом; так поступает и тот, кто считает, и тот, кто делит пополам. При таком делении ни линия, ни движение не будут непрерывными, так как непрерывное движение есть движение по непрерывному, а в непрерывном заключено бесконечное [число] половин, но только не в действительности, а в возможности.

|< Пред. 261 262 263 264 265 След. >|

Java книги

Контакты: [email protected]