Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)   ::   Грин Брайан

Страница: 626 из 666

Отметим для полноты, что хотя большая часть приведенных выше аргументов в равной степени справедлива как для открытых струн (струн со свободными концами), так и для замкнутых струн (которым мы уделяли основное внимание), в рассматриваемом вопросе два типа струн могут, кажется, проявлять различные свойства. Действительно, открытая струна не может быть «насажена» на циклическое измерение. Тем не менее, в результате исследований, сыгравших в конце концов ключевую роль во второй революции суперструн, Джо Польчински из Калифорнийского университета в городе Санта-Барбара и двое его студентов, Джиан-Хюи Дай и Роберт Лей, в 1989 г. продемонстрировали, что открытые струны прекрасно вписываются в схему, которая будет описана в данной главе.

2. Чтобы ответить на вопрос о том, почему возможные энергии однородных колебаний равны целым кратным 1/R, достаточно лишь вспомнить обсуждение квантовой механики (в частности, примера с ангаром) в главе 4. Там мы узнали о том, что согласно квантовой механике энергия, как и деньги, существуют в виде дискретных порций, т. е. в виде целых кратных различных энергетических единиц. В случае однородного колебательного

движения струны во вселенной Садового шланга эта энергетическая единица в точности равна 1/R, как объясняется в основном тексте на основе соотношения неопределенностей. Таким образом, энергия однородных колебаний равна произведению целых чисел на 1/R.

3. Математически равенство энергий струн во вселенной с радиусом циклического измерения R или 1/R есть следствие формулы для энергии v/R+wR, где v — колебательное число, аw— топологическое число.

|< Пред. 624 625 626 627 628 След. >|

Java книги

Контакты: [email protected]