Страница:
55 из 77
Благодаря такому точному соответствию из двух величии – расстояния в пространстве между какими-либо двумя событиями и промежутка времени, их разделяющего, простым расчетом можно получить величину, которая постоянна для всех наблюдателей, как бы они не двигались, и никак не зависит от скорости любых «лабораторий». Эта величина играет роль расстояния в четырехмерном пространстве-времени. Пространство-время и есть то «объединение» пространства и времени, о котором говорил Г.Минковский.
Вообразить такое формальное присоединение времени к пространству, пожалуй, нетрудно. Гораздо сложнее наглядно представить себе четырехмерный мир. Удивляться трудности не приходится. Когда мы в школе рисуем плоские геометрические фигуры на листе бумаги, то обычно не испытываем никаких затруднений в изображении этих фигур; они двумерны (имеют только длину и ширину).
Гораздо труднее воображать трехмерные фигуры в пространстве – пирамиды, конусы, секущие их плоскости и т.д. Что касается воображения четырехмерных фигур, то иногда это очень трудно даже для специалистов, всю жизнь работающих с теорией относительности.
Так, известный английский физик-теоретик, крупнейший специалист в теории относительности Стивен Хокинг говорит: «Невозможно вообразить четырехмерное пространство. Я сам с трудом представляю фигуры в трехмерном пространстве!». Поэтому человеку, испытывающему трудность с представлением четырехмерия, огорчаться не надо.
|< Пред. 53 54 55 56 57 След. >|