Критика чистого разума :: Кант И
Страница:
52 из 163
В самом деле, так как дефиниция есть расчленение данных понятий, то эти понятия, хотя еще и смутно, предваряют [другие], и неполная экспозиция предшествует полной, причем из немногих признаков, извлеченных нами из неполного еще расчленения, мы уже многое можем вывести раньше, чем придем к полной экспозиции, т. е. к дефиниции; словом, в философии дефиниция со всей ее определенностью и ясностью должна скорее завершать труд, чем начинать его. Наоборот, в математике до дефиниции мы не имеем никакого понятия, так как оно только дается дефиницией; следовательно, математика должна и всегда может начинать с дефиниций.
b) Математические дефиниции никогда не могут быть ошибочными. Действительно, так как в математике понятие впервые дается дефиницией, то оно содержит в себе именно то, что указывается в нем дефиницией. Но хотя по содержанию в ней не может быть ничего неправильного, тем не менее иногда, правда лишь изредка, она может иметь пробел в форме (в которую она облекается), а именно в отношении точности. Так, общепринятая дефиниция окружности как кривой линии, все точки которой находятся на одинаковом расстоянии от одной и той же точки (от центра), заключает в себе тот недостаток, что в ней без всякой нужды введено определение кривизны. В самом деле, должна быть особая, выводимая из дефиниции и легко доказуемая теорема о том, что всякая линия, все точки которой находятся на одинаковом расстоянии от одной и той же точки, есть кривая (ни одна часть ее не есть прямая).
|< Пред. 50 51 52 53 54 След. >|