Страница:
41 из 66
Конструктивная и деструктивная дилеммы
Дилеммами называются рассуждения, посылками которых являются по меньшей мере два условных высказывания (высказывания с «если, то») и одно разделительное высказывание (высказывание с «или»).
Выделяются следующие разновидности дилеммы.
Простая конструктивная (утверждающая) дилемма:
Если А, то С.
Если В, то С.
А или В.
С
Например: «Если прочту детектив Агаты Кристи, то хорошо проведу вечер; если прочту детектив Жоржа Сименона, тоже хорошо проведу вечер; прочту детектив Кристи или прочту детектив Сименона; значит, хорошо проведу вечер».
Рассуждение этого типа в математике принято называть доказательством по случаям. Однако число случаев, перебираемых последовательно в математическом доказательстве, обычно превышает два, так что дилемма приобретает вид:
Если бы было справедливо первое допущение, теорема была бы верна;
при справедливости второго допущения теорема также была бы верна;
при верном третьем допущении теорема верна;
если верно четвертое допущение, теорема верна;
справедливо или первое, или второе, или третье, или четвертое допущение.
Значит, теорема верна.
Сложная конструктивная дилемма:
Если А, то В.
Если С, то Д.
А или С.
В или Д.
Например: «Если будет дождь, мы пойдем в кино; если будет холодно, пойдем в театр; будет дождь или будет холодно; следовательно, мы пойдем в кино или пойдем в театр».
Простая деструктивная (отрицающая) дилемма:
Если А, то В.
|< Пред. 39 40 41 42 43 След. >|