Мечты об окончательной теории :: Вайнберг Стивен
Страница:
412 из 435
Работы Гаусса, Больяи и Лобачевского были важными для будущего развития математики, поскольку они описали такое пространство не просто как искривленное наподобие поверхности Земли и погруженное в неискривленное пространство более высокой размерности, а как обладающее внутренней кривизной, без каких-либо ссылок на то, как это пространство погружено в высшие измерения.
Б113
Одна из версий пятого постулата Евклида утверждает, что через данную точку вне данной прямой можно провести одну и только одну прямую, параллельную данной. В новой неевклидовой геометрии Гаусса, Больяи и Лобачевского можно провести много таких параллельных прямых.
Б114
Эти эксперименты были сделаны М. Туве вместе с Н. Хейденбергом и Л. Хафстадом с помощью ускорителя Ван де Граафа напряжением 1 млн В, который выстреливал пучок протонов на богатую протонами мишень типа парафина.
Б115
По этой причине такая симметрия называется симметрией изотопического спина 39) . (Она была предложена в 1936 г. Г. Брейтом и Ю. Финбергом и независим о Б. Кассеном и Ю. Кондоном на основании экспериментов Туве и др.) Симметрия изотопического спина математически аналогична внутренней симметрии, лежащей в основе слабых и электромагнитных взаимодействий в электрослабой теории, но физически эти симметрии различны. Одно отличие заключается в том, что в семейства группируются разные частицы: протон и нейтрон в случае симметрии изотопического спина и левые электрон и нейтрино, а также левые u – и d -кварки в случае электрослабой симметрии.
|< Пред. 410 411 412 413 414 След. >|