Онтология математического дискурса   ::   Гутнер Г Б

Страница: 114 из 170

Произнося определенное суждение, мы адресуемся к чертежу, как результату проведенного построения. Суждение, произносимое при доказательстве, также произносится теперь, но для него есть нечто, к чему оно относится как к уже происшедшему. Это происшедшее есть событие, оставившее след и поскольку мы имеем возможность обратится к нему снова, т.е. вторично после построения, мы определяем его как прошлое по отношению к произносимому ныне суждению. Объект при этом должен быть вновь воспринят, т.е. вновь стать действительным. Будучи впервые актуализирован при построении, он повторно актуализируется при доказательстве. Ясно, что такая актуализация может происходить многократно. То, что остается после построения, т.е. то, что подлежит актуализации при доказательстве мы и называем следом.

Выше мы говорили, что многократность воспроизведения собственно и означает общность. След, таким образом, есть общее для многих актуализаций. Он также есть возможное - он может быть актуализирован и поэтому находится в согласии с формальными условиями опыта. Но он не совпадает с понятием, хотя бы потому, что понятие может актуализироваться при другом построении и произвести еще один след. Впрочем, актуализация следа требует обращения к понятию, поскольку при ней должна быть задействована та же самая схема, сообразно с которой происходило построение. Поэтому математический дискурс носит отчасти герменевтический характер: глядя на данную графическую конфигурацию, мы воспроизводим ее смыслы, т.е. пытаемся прочесть ее.

|< Пред. 112 113 114 115 116 След. >|

Java книги

Контакты: [email protected]