Онтология математического дискурса   ::   Гутнер Г Б

Страница: 37 из 170

Математические предметы играют в декартовской онтологии особую роль. Можно сказать, что они фундируют всякое суждение о существовании любого материального предмета. Основанием для такого вознесения математики является именно рассмотрение протяженности как главного атрибута субстанции. Мы судим о вещи по ее свойствам. Но всякое свойство может быть рассмотрено как сущее (т.е. как свойство реально существующей вещи) лишь тогда, когда оно произведено от протяженности. Значит, чтобы ясно судить о свойствах вещи (и быть убежденным в ее существовании), мы должны, прежде всего, рассмотреть ее как вещь математическую, точнее, как предмет геометрии. Последняя изучает протяженность "саму по себе" лишь поскольку она протяженность. Нельзя сказать, как это делает Аристотель, что математика изучает субстанцию, поскольку она протяженная, а другие науки (которые ничуть не хуже математики) изучают (столь же успешно) какие-то другие ее свойства. Все свойства суть модусы протяженности, а значит все науки зависимы от математики. Поэтому не объекты математики существуют в том смысле, что они суть некоторые способы представления сущности. Скорее наоборот: предмет оказывается сущностью в той мере, в какой он объект математики. Критерий существования вещи состоит в доступности ее математическому познанию. Онтологический статус вещи определяется тем, что она есть вещь протяженная.

Однако возможность судить о вещи как о протяженной субстанции, т.е.

|< Пред. 35 36 37 38 39 След. >|

Java книги

Контакты: [email protected]