Онтология математического дискурса   ::   Гутнер Г Б

Страница: 90 из 170

связь согласно законампричинности и взаимодействия). Следовательно постулат действительности требует непосредственного восприятия предмета для познания его существования. Поэтому как о действительном можно говорить, прежде всего, только о единичном предмете, представленном благодаря ощущению. Есть ли вообще в математике такие предметы? Несомненно есть, поскольку всякое математическое рассуждение так или иначе оставляет след на бумаге или на доске. Действительным является изображенный и непосредственно воспринимаемый математический символ, выписанная формула (конечная последовательность символов), начерченная геометрическая фигура. Но эти ли предметы представляют для математики основной интерес? Разве, например, в теореме о сумме внутренних углов треугольника говорится о неровном карандашном следе, о трех попарно пересекающихся на листе бумаги отнюдь не прямых линиях, которые непосредственно воспринимаются нами? Конечно же нет. Речь идет о треугольнике "вообще", который нигде и никак не нарисован. Но в таком случае он и не действителен.

Может ли предмет знания не быть действительным (т.е. существующим) предметом? Ответ на этот вопрос легко угадывается, благодаря присутствию в таблице категорий другой категории модальности. Предмет знания может быть возможным предметом. Сказанного здесь уже достаточно, чтобы предполагать, что именно о возможных предметах и говорит, прежде всего, математика.

|< Пред. 88 89 90 91 92 След. >|

Java книги

Контакты: [email protected]