Онтология математического дискурса   ::   Гутнер Г Б

Страница: 93 из 170

Возможность чего, собственно, устанавливается. Мы видели уже, что устанавливается возможность понятия. Но конструирование, производимое воображением, согласно условиям чувственности, не может происходить без того, чтобы представить образ, воображаемый результат конструирования. Очевидно, что образ, наряду с понятием, также должен фигурировать в качестве возможного.

Итак есть смысл говорить о возможности понятия и возможности образа. В самом деле и то и другое во-первых соответствует формальным условиям опыта, а во-вторых противопоставлено действительному, т.е. представленной в восприятии единичности. Иными словами и понятие, и образ возможны поскольку могут быть осуществлены (актуализированы). Впрочем, они возможны в разном смысле. Можно представить себе невозможное понятие (Кант приводит пример плоской фигуры, ограниченной двумя прямыми). Но образ возможен всегда, поскольку является результатом завершенного синтеза. Разберем теперь все сказанное на примере геометрии. Тот факт, что евклидова геометрия является основным источником для философии математики Канта, принимается многими исследователями. В частности это объяснено в [72], [74], [79], [83], [62]. Поэтому рассмотрение кантовских категорий на материале "Начал" Евклида можно считать модельным. Это, однако, поможет нам увидеть некоторые моменты применения указанных чистых понятий рассудка, которые оказываются существенны и для других областей математики, а возможно и для всякого знания вообще.

|< Пред. 91 92 93 94 95 След. >|

Java книги

Контакты: [email protected]