Страница:
37 из 203
Думается, можно быть вполне уверенным в том, что и в будущем экспансия математических методов продолжится, поэтому вполне разумно предположить, что, наверное, не существует вообще никаких пределов для количественного анализа. Но если это и в самом деле так, то абсолютно правомерно ставить вопрос о количественном соотношении между собой любых начал, любых объектов, процессов, явлений. Словом, об измерении, сравнении и т.п. всего того, о чем вообще только можно помыслить. В логическом пределе допустимо складывать друг с другом самые «экзотические» вещи. Допустимо утверждать, что своя количественная шкала должна найтись для любого класса явлений. Поэтому то, что сегодня мы можем выполнить эту операцию далеко не со всеми из них, говорит лишь о том, что совокупность тех общих представлений о мире, которые лежат в основании любого счета, далеко не завершена.
Иначе говоря, уже при анализе, казалось бы, предельно простой, доступной даже ребенку интеллектуальной задачи мы обнаруживаем совершенно неожиданную парадоксальную вещь. Суть ее заключается в следующем. Мечта любого начинающего исследователя – совершить великое научное открытие. Но поначалу едва ли не самой трудной научной проблемой для него оказывается обнаружить хотя бы какую-нибудь проблему, найти то, что еще в принципе не решено наукой. На первых порах кажется, что ею давно уже выявлено все, что только можно, и новое знание возможно получить только там, где оказывается доступным проникновение за какой-нибудь «…надцатый» знак после запятой достоверно установленного результата.
|< Пред. 35 36 37 38 39 След. >|