Доктрина циклов   ::   Борхес Хорхе Луис

Страница: 4 из 11





1 соответствует 3018,

2 -» – 3018 \ или 9 108 324,

3 и так далее.



Гениальное признание этих соответствий вдохновило теорему, что бесконечное множество – допустим, весь натуральный ряд – представляет собой такое множество, члены которого, в свою очередь, могут подразделяться на бесконечные ряды. (Точнее, избегая всякой двусмысленности: бесконечное множество – это множество, равное любому из своих подмножеств.) На высоких широтах счисления часть не меньше целого: точное число точек, имеющихся во вселенной, равно их числу в метре, дециметре либо на самой изогнутой из планетарных траекторий. Натуральный ряд чисел прекрасно упорядочен: образующие его члены последовательны; 28 предшествует 29 и последует 27. Ряд точек пространства (либо мгновений времени) не упорядочить подобным образом; ни одно число не имеет непосредственно ему последующего или предшествующего. Это все равно что располагать дроби в зависимости от их величины. Какую дробь поставить вслед за 1/2? Не 51/100, поскольку 101/200 ближе; не 101/200, поскольку ближе будет 201/400; не 201/400, поскольку ближе будет… По Георгу Кантору, то же самое происходит и с точками. Мы всегда можем вставить бесконечное число других. Безусловно, следует избегать нисходящих величин. Каждая точка «уже» есть конец бесконечного дробления.

Пересечение прекрасных игр Кантора с прекрасными игра ш Заратустры для Заратустры смертельно.

|< Пред. 2 3 4 5 6 След. >|

Java книги

Контакты: [email protected]