Обратная перспектива   ::   Флоренский Павел

Страница: 61 из 103

Но действительность по меньшеймере трехмерна, — даже если забыть о четвертом измерении, времени, без которого нет художества, — плоскость только двухмерна. Возможно ли такое соответствие? Возможно ли четырехмерный или, скажем для простоты, трехмерный образ отобразить на двухмерном протяжении, хватит ли в последнем точек, соответственных точкам первого, или, математически говоря: мощность образа трехмерного и таковая же двухмерного могут ли быть сравнимы? — Ответ, естественно напрашивающийся на ум — «Конечно, нет», — «Конечно, нет, ибо в трехмерном образе — бесконечное множество двухмерных разрезов, и, следовательно, мощность его бесконечно больше мощности каждого отдельного разреза». Но внимательное обследование поставленного вопроса в теории точечных множеств показывает, что он не так-то прост, как это представляется с первого взгляда, и более того, что данный выше ответ, по-видимому естественный, не может быть признан правильным. Определеннее: мощность всякого трех- и даже многомерного образа точно такая же, как и мощность любого двух- и даже одномерного образа. Изобразить четырех- или трехмерную действительность на плоскости можно, и можно даже не только на плоскости, но и на любом отрезке прямой или кривой линии. При этом такое отображение возможно установить бесчисленным множеством, как арифметическим или аналитическим, так и геометрических соответствий. Типом первого может служить прием Георга Кантора, а вторых — кривая Пэано или кривая Гильберта [ 46 ].

|< Пред. 59 60 61 62 63 След. >|

Java книги

Контакты: [email protected]