Страница:
64 из 103
Не входя в технические подробности кривых Пэано, Гильберта и других, заметим лишь, что своими извивами в духе меандров такая кривая заполняет всю поверхность квадрата, и всякая точка квадрата, при том или другом конечном числе меандризаций этой кривой, систематически накопляемых, т. е. согласно определенному единообразному приему, — будет непременно задета извивами кривой. Аналогичные процессы применимы для отображения, как это разъяснено выше, чего угодно, на чем угодно.
Итак, непрерывные множества между собою все равномощны. Но, обладая одинаковой мощностью, они не имеют одних и тех же «умопостигаемых» или «идеальных» чисел в смысле Г. Кантора, т. е. не «подобны» между собою. Иначе говоря, нельзя отображать их друг в друге, не затрагивая их строения. При установке соответствия нарушается либо непрерывность изображаемого образа ( — это когда хотят соблюсти взаимную однозначность изображаемого и изображения — ), либо — взаимная однозначность того и другого ( — когда сохраняется непрерывность изображаемого — ).
Приемом Кантора образ передается точка в точку, так что любой точке образа соответствует только одна точка изображения, и наоборот, каждая точка этого последнего отображает только одну точку изображаемого. В этом смысле, канторовское соответствие удовлетворяет привычному представлению об изображении. Но другим своим свойством оно чрезвычайно далеко от последнего: оно, как и все другие взаимооднозначные соответствия, не сохраняет отношений соседства между точками, не щадит их порядка и связей, т. е. не может быть непрерывным.
|< Пред. 62 63 64 65 66 След. >|