Страница:
63 из 147
В самом деле: минусы и плюсы покидают поле под дружные аплодисменты. Буковки снова образовали пестрый прямоугольник. Но теперь в первом ряду стоят буквы в зеленом, во втором — в красном, в третьем — в светло-желтом. Они повторяют самое первое упражнение — перемножение одночленов. Только теперь все сомножители одинаковые. И опять происходят чудеса. Как только две одинаковые буквы перемножатся, одна из них сейчас же исчезает, а на поле появляется число Два. Буква протягивает руку, и Двойка ловко вскакивает к ней на ладошку: а2.
Вы думаете, число Два называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы, — это возведение в степень!
Вот перемножились три b, и получилось Бэ в кубе: b3.
Десять с, перемножившись, образовали одночлен — Цэ в десятой степени: с10.
Одна комбинация сменяется другой. Перед нами возникают: a25, b40, c16, a6
И вот появляется Цэ в степени эн: сn.
Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведенное в любую степень. Подставьте вместо эн любое число — и ответ готов.
Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимнастические упражнения: умножение многочленов на одночлен. Вот уже образовались двучлены: а + b, а + с, потом трехчлены: а + b + с и много других. Сейчас они начнут умножаться на одночлены… Но в чем дело? Произошла какая-то заминка.
|< Пред. 61 62 63 64 65 След. >|