Диалоги (август 2003 г.)   ::   Гордон Александр

Страница: 292 из 310



Если мы перейдём от евклидовой геометрии и векторной алгебры к рассмотрению фундаментальных физических законов, лежащих в основании самых различных разделов физики, то мы всюду обнаружим одно и то же:

два множества физических объектов различной или одной и той же природы;

репрезентатор – прообраз квадрата расстояния между двумя точками в евклидовой геометрии или прообраз скалярного произведения двух векторов в линейной алгебре;

два корта конечной длины, состоящие, соответственно, из s произвольных элементов первого множества и r произвольных элементов второго множества,

и верификатор – функцию s r числовых переменных, связывающую между собой s r репрезентаторов.

Оказывается, с точностью до физической интерпретации все фундаментальные физические законы – законы механики, теории относительности, термодинамики, электродинамики, квантовой механики и даже статфизики, а также многие разделы чистой математики построены по одному и тому же проекту, по которому построены евклидова геометрия, геометрии Лобачевского и Римана и векторная алгебра. Другими словами, можно сказать, что вся физика может быть изложена на едином языке сакральной геометрии.

В отличие от традиционной «антропной» геометрии на одном множестве, сакральная геометрия с самого начала строится на двух множествах различной природы. И, как и следовало ожидать, общеизвестная антропная геометрия представляет собой особый случай вырождения сакральной геометрии, когда исходные два множества сливаются в одно.

|< Пред. 290 291 292 293 294 След. >|

Java книги

Контакты: [email protected]