Страница:
127 из 302
Под «изяществом» понимается остроумие аргументации, установление неожиданных связей, богатство и значительность заключений при минимальном числе правдоподобных предположений… Словом, то, что отражает красоту законов разума.
Красота логических построений в самом чистом виде проявляется в математике. Так, математика изучает все возможные геометрии пространства с произвольным или даже бесконечным числом измерений. Математическая ценность и красота этих результатов не зависят от того, какая именно из геометрий осуществляется в нашем трехмерном мире.
Один из удивительных примеров математической красоты - это «алгебра высказываний», или «алгебра логики», позволившая анализировать законы и возможности логических заключений.
Еще у Аристотеля была идея составлять сложные рассуждения, последовательно применяя более простые элементы, независимые от природы объектов, о которых идет речь. Дальнейшее развитие эта идея получила у Лейбница - он пытался придать аристотелевой логике алгебраическую форму. Но только в середине прошлого века идея превратилась в законченную теорию (см.: Бурбаки Н. Очерки по истории математики. М., 1963).
Обычная алгебра, которую учат в школе, не единственно возможная. Если вы увидите книгу под названием «Алгебры Ли», не думайте, что множественное число - это опечатка.
|< Пред. 125 126 127 128 129 След. >|