Страница:
229 из 302
Действительно, при малых г, когда первое слагаемое больше второго, энергия понижается при увеличении г, а при больших г, когда второе слагаемое много больше первого, г выгодно уменьшать. Точный расчет дает для минимума энергии условие 2T = V. Таким образом, получаем:
При n = 1 это выражение дает правильную оценку
для радиуса атома в наинизшем состоянии. Подставляя значение г в выражение для Е_n (r), получим:
то есть в точности то выражение, которое мы приводили. В действительности электрон может с разной вероятностью находиться на любом расстоянии от ядра. Наше упрощение состояло в предположении, что это расстояние определенное, равное г, и находится из условия минимальности энергии. Разумеется, мы действовали грубо. Поэтому нельзя доверять численному множителю перед формулой. Но все остальное получилось верно! И множитель mZ2e4/h2 и, что особенно важно, зависимость от «квантового числа» n.
Точное решение потребовало бы знания основного уравнения квантовой механики - уравнения Шрёдин-гера - и очень сложной по школьным понятиям математики. То, что мы нашли, и есть качественное решение, когда результат получается с точностью до неизвестного численного множителя, в несколько раз отличающегося от единицы, но характер зависимости от параметров задачи передается правильно. Качественное решение чрезвычайно облегчает получение точного, поскольку выясняются главные черты явления. Более того, если есть качественное решение, а точного не удается получить аналитически, можно найти его без особых потерь в понимании задачи, с помощью вычислительных машин.
|< Пред. 227 228 229 230 231 След. >|