ПОИСКИ ИСТИНЫ   ::   Мигдал А.

Страница: 233 из 302

Поскольку «частица» движется в области от -q до q, то для того,

чтобы образовалась стоячая волна, на «длине» 2q должно укладываться целое числополуволн: 2q/(\lavbda/2) =n +1; n = 0,1,2,3. Сначала найдем скорость

Наинизшее значение п равно нулю - на длине 2q укладывается половина длины волны - максимум посередине и нули на краях. В этом состоянии неопределенность импульса \del p ~p~ \beta q'~h/q , в согласии с соотношением неопределенности.

Подставляя выражение для скорости в кинетическую энергию, получим:

А для полной энергии получим:

Значение q, дающее наименьшую энергию, получится, если приравнять кинетическую и потенциальную энергии:

Подставляя в выражение для энергии, найдем:

Действительно, величина sqrt(\gamma/\beta)=\omega представляет собой частоту колебаний классического осциллятора. При точном расчете для энергии получается выражение:

Таким образом, мы ошиблись только в численном множителе (\pi/2 вместо 1) при n, а также в численном значении энергии наинизшего состояния, когда n =0 = 0 (\pi h \omega/2 вместо h \omega/2). Все остальное получилось правильно! Теперь, когда результат получен, следует задуматься над тем, что мы использовали для его получения и что вытекает из полученных нами выражений для энергии осциллятора и для величины q2.

Прежде всего мы применили к нашему осциллятору, не интересуясь его устройством, принципы квантовой механики, установленные первоначально для электронов. Конечно, естественно ожидать, что общие принципы должны быть такими же и для других частиц с массой, отличающейся от массы электрона. Такое обобщение с большой точностью подтвердилось опытом.

|< Пред. 231 232 233 234 235 След. >|

Java книги

Контакты: [email protected]