Страница:
165 из 257
— И поэтому мы можем найти, например, такие числа X и У, для которых X порождает двойной ассоциат У, а У порождает повторение обращения X или любые другие комбинации, какие вы захотите.
— Вот так штука! — изумился Мак-Каллох. — Ведь все это время я пытался придумать машину как раз с таким свойством, а она у меня, оказывается, уже есть!
— Безусловно есть, — подтвердил Фергюссон.
— А как вы докажете это свойство? — спросил Мак-Каллох.
— Я бы хотел начать доказывать его постепенно, — ответил Фергюссон. — Собственно говоря, суть дела заключается в ваших правилах 1 и 2. Поэтому сначала позвольте сделать несколько замечаний относительно вашей первой машины — той, в которой используются только эти два правила. Начнем со следующей простой задачи: можно ли, используя правила 1 и 2, найти два различных числа X и У, таких, чтобы число X порождало У, а число У в свою очередь порождало X?
Крейг и Мак-Каллох тут же занялись этой задачей.
— Ну, конечно, — рассмеялся вдруг Крейг. — Это же очевидно вытекает из того, что совсем недавно показы вал мне Мак-Каллох.
А вы можете найти эти числа?
— Теперь, — сказал Фергюссон, — для любого числа А существуют такие числа X и У, что X порождает У, а число У порождает АХ. Если число А нам задано, то можете ли вы найти числа X и У? Например, можете ли вы найти такие X и У, чтобы X порождало У, а У порождало 7X7
— Мы все еще пользуемся только правилами 1 и 2 или уже можно применять правила 3 и 4? — спросил Крейг.
— Вам понадобятся только правила 1 и 2,— ответил Фергюссон.
|< Пред. 163 164 165 166 167 След. >|