Страница:
178 из 257
В самом деле, для любого заданного операционного числа М существует некое число Y, которое порождает MY; отсюда ясно, что число М У порождает М(М У). Поэтому число X порождает М(Х), где Х = МУ. Точно так же для любого числа А, если имеется некоторое число У, порождающее AMY, число МУ порождает М(АМУ) и, следовательно, число X порождает М(АХ) при Х = МУ.
Что же касается теоремы 3, то ее можно доказать так же, как это делалось в предыдущей главе. [Например, если даны операционные числа М и N и если выполняется второй принцип Крейга, то существует некое число X, которое порождает M(N2X). Если теперь мы обозначим число N2X через У, то получим, что число X порождает М(У), а число У порождаетN(X)]
Ключ
Дело, по которому Крейг поехал в Норвегию, заняло у него гораздо меньше времени, чем он предполагал, и ровно через три недели инспектор возвратился домой. Дома его ждала записка от Мак-Каллоха:
Дорогой Крейг!
Если ты случайно вернешься из Норвегии до 12 мая (это пятница), то приходи ко мне в этот день обедать. Фергюссона я уже пригласил.
С приветом
Норман Мак-Каллох
— Вот и отлично! — сказал себе Крейг. — Я вернулся как раз вовремя!
Крейг приехал к Мак-Каллоху минут через пятнадцать после того, как там появился Фергюссон.
— С благополучным возвращением! — приветствовал приятеля Мак-Каллох.
— Пока вас не было, — сразу же сообщил Фергюссон, — Мак-Каллох изобрел новую числовую машину!
— Ну да? — удивился Крейг.
|< Пред. 176 177 178 179 180 След. >|