Принцесса или тигр   ::   Смаллиан Рэймонд

Страница: 204 из 257

Дополнение любого множества, допускающего наименование в данной системе, также именуемо в этой системе. Иначе говоря, для любого числа х найдется такое число х, для которого множество А* является дополнением множества Ах. (Для системы Фергюссона таким х было число 3х.)

Условие G3. Для любого именуемого множества А множество А* также именуемо в данной системе. Иначе говоря, для любого числа x всегда найдется такое число х*, что множество А, — представляет собой, множество всех чисел n, для которых n*n принадлежит А, (Для системы Фергюссона таким х* было число 3x+1.)

Очевидно, что условия F1, F2 и Fз, характеризующие машину Фергюссона, представляют собой не более чем частные случаи условий G1, G2 и G3. Последние имеют большое значение потому, что они действительно выполняются для самых разнообразных математических систем, в том числе и для тех двух систем, которые рассмотрены в работе Гёделя. Другими словами, оказывается возможным расположить все допускающие наименование множества в виде бесконечной последовательности A1, A2…, An… и ввести для всех утверждений некоторую частную нумерацию Гёделя, причем так, что будут выполняться условия G 1, G2 и G3. В результате все то, что является доказуемым для систем, удовлетворяющих условиям G1, G2 и G3, будет применимо ко многим другим важным системам. Теперь мы можем сформулировать и доказать теорему Гёделя в общей форме.

Теорема G.

|< Пред. 202 203 204 205 206 След. >|

Java книги

Контакты: [email protected]