Страница:
228 из 257
Подобная ситуация рассматривается в последней главе моей книги «Как же называется эта книга?» в разделе «Дважды гёделевы острова», к которому мы и отсылаем читателя.
3. Положим Z = PA-P-NP-РА.
Далее, положим Y = NP-Z (то есть Y = NP-РА-Р-NP-РА).
Положим, наконец, Х = Р-Y (то есть Х = Р-NP-PA-P-NP-PA).
Из этих выражений сразу ясно: X утверждает, что Y допускает распечатку, а Y говорит нам о том, что Z не допускает распечатки. Что же касается Z, то оно утверждает, что допускает распечатку ассоциат утверждения Р-NP-РА; но ассоциат Р-NP-РА есть утверждение Р-NP-РА-Р-NP-РА, которое в свою очередь и есть X! Итак, Z утверждает, что X допускает распечатку.
Таким образом, X утверждает, что Y допускает распечатку, Y утверждает, что Z не допускает распечатки, a Z утверждает, что распечатку допускает X. Посмотрим теперь, что же из этого следует.
Предположим, что Z допускает распечатку. Тогда Z истинно, откуда следует, что X допускает распечатку, а значит, является истинным; это в свою очередь означает, что Y допускает распечатку и, следовательно, является истинным. Если же Y истинно, то, стало быть, Z не должно допускать распечатки. Таким образом, мы приходим к противоречию: если Z допускает распечатку, то оно ее не допускает. Значит, Z не допускает распечатки, и поэтому Y является истинным. Итак, нам известно, что:
(1) Z не допускает распечатки;
(2) Y истинно.
Далее, X может быть либо истинным, либо ложным. Предположим, что X истинно.
|< Пред. 226 227 228 229 230 След. >|