Страница:
231 из 257
откуда Х = Р-R-R-NPA-Р-R-R-NPA.
Тогда X утверждает доказуемость Y, Y утверждает опровержимость Z, Z утверждает опровержимость W, a W утверждает недоказуемость X (действительно, W утверждает недоказуемость ассоциата выражения Р-R-R-NPA, которым является само высказывание X).
Если W опровержимо, то W ложно; поэтому X доказуемо и, значит, истинно; следовательно, Y доказуемо, а значит, истинно; стало быть, Z опровержимо, а потому ложно. Отсюда сразу следует, что W неопровержимо. Итак, W не может быть опровержимым; значит, W является неопровержимым, и, следовательно, Z будет ложным.
Далее, если W ложно, то W ложно, но неопровержимо. Предположим, что W истинно; тогда X недоказуемо. Если X истинно, то X истинно и недоказуемо. Предположим теперь, что X ложно; тогда Y недоказуемо. Если Y истинно, то Y истинно, но недоказуемо. Предположим, наконец, что Y ложно; тогда Z неопровержимо. Итак, в данном случае Z ложно, но неопровержимо.
Приведенное рассуждение показывает, что либо W ложно и неопровержимо, либо X истинно и недоказуемо, либо Y истинно и недоказуемо, либо Z ложно и неопровержимо.
7. Эта задача фактически представляет собой просто записанный в других обозначениях вариант задачи 1 данной главы!
Мы знаем, что число 32983 в первой машине Мак-Каллоха порождает число 9832983. Следовательно, по условию Мс1 утверждение 832983 истинно в том и только том случае, если утверждение 9832983 доказуемо.
|< Пред. 229 230 231 232 233 След. >|