Страница:
90 из 194
Пусть его радиусравен r.
— Раз числа ни при чём, пусть будет r, — согласился Нулик.
Таня провела три радиуса в точки касания круга со сторонами треугольника.
— Прежде чем решать задачу, — сказала она, — заметьте, что точки касания делят стороны треугольника на две части. Кроме того, очень важно вспомнить, что радиус, проведённый в точку касания, всегда перпендикулярен касательной. Стало быть, после того как мы провели радиусы в точки касания, при вершине прямого угла у нас образовался квадрат. А у квадрата все стороны между собой равны. Отсюда следует, что катет a разделился на части r и a-r, а катет b — на части r и b-r. Остаётся выяснить немногое: на какие части точка касания разделила гипотенузу. Кто хочет высказаться?
Сева почтительно привстал.
— Позвольте мне, профессор. Надеюсь, всем известно, что касательные к кругу, проведённые из одной точки, равны между собой?
— Всем известно! — буркнул Нулик, нетерпеливо барабаня пальцами по столу. — Только для чего это надо?
— А для того, что отсюда сразу ясно: гипотенуза разделилась в точке касания на отрезки a-r и b-r. Теперь мы можем сказать, что гипотенуза равна сумме двух отрезков: a-r и b-r, то есть c=a-r+b-r. А уж отсюда ничего не стоит вывести, что диаметр круга равен сумме катетов минус гипотенуза, то есть
2r = a+b-c.
— Как просто! — захихикал Нулик. — Но всё-таки проверим. Значит, c у нас равно 13, а (a+b) равно 17. Тогда 2r=17-13, то есть 4 дециметрам.
|< Пред. 88 89 90 91 92 След. >|