Иножитель (Клокочущая пустота, Гиганты - 3) :: Казанцев Александр
Страница:
248 из 283
Именно поэтому она должна обладать и такой особенностью, присущей всему прекрасному, как с и м м е т р и я!
- Что вы имеете в виду? - насторожился Ферма.
- Я убежден, что диофантово уравнение степеней должно иметь целочисленное решение не только для линий и квадратов, но и для степеней минус единица и минус два.
- Убеждены? - с лукавством воскликнул Ферма. - Убежденности мало, математика требует доказательств. - И он пододвинул Сирано лист бумаги, обмакнул гусиное перо в чернильницу и протянул его Сирано. - Доказывайте!
- Я воспользовался уроками моего ритора и кое-что вывел дома. Постараюсь сейчас вспомнить.
И он стал писать на бумаге ряд формул*.
_______________
* Примечание автора для особо интересующихся. Целочисленные
решения диофантова уравнения x\n + y\n = z\n с отрицательными
степенями были доказаны в наше время математиком-любителем из г.
Мариуполя Г. И. Крыловым, который для n = - 2 так свел уравнение:
Г. И. Крылов, преобразовав диофантово уравнение в биномы,
получил формулу, поэтически названную им "Людмилой". (Люда + Мила),
(|x| + |a|) + (|x| + |b|) = (|x| + |c|), где |а| = |z| - |x|, |b| =
|y| - |x| и |c| = |z| - |x|, позволившую ему решать уравнения и с
положительными, и с отрицательными степенями.
- Так что же вы тут написали, мой друг? - спросил Ферма, беря в руки исписанный листок.
- Мне кажется, - скромно заметил Сирано, - что ваша теорема не потеряет от некоторого уточнения.
|< Пред. 246 247 248 249 250 След. >|