Информатика, кибернетика, интеллект   ::   Пушкин В Г

Страница: 54 из 549

Все это свидетельствует о необходимости экспликации категории информации на наиболее общем уровне математической

30

структуры, об определенной независимости понятия информации от конкретного вида объектов, относительно которых она определяется и измеряется.

"Единственной математической теорией, - подчеркивает А. А. Шаров, которая не налагает никаких ограничений на природу объектов, является теория категорий" [48]. Объектами этой теории могут быть теоретико-порядковые структуры, топологические пространства, универсальные алгебры, множества. Для теории категорий важно лишь то, чтобы каждая пара объектов (элементов) характеризовалась некоторым множеством отображений (морфизмов). Информация при этом теоретико-категориальном подходе к ее экспликации может быть охарактеризована как мономорфизм, то есть как отображение, при котором сохраняется разнообразие прообраза. Если же разнообразие при мономорфном отображении не сохраняется (например, в том случае, когда буквы текста отображаются инъективно, но все образы оказываются неразличимыми), происходит его потеря, то такое отображение не является отображенным разнообразием, то есть информацией.

А. А. Шаров вводит понятие количества информации морфиама, позволяющее установить количество информации, необходимой для того, чтобы осуществить данный морфизм, и на основе этого - измерение ценности информации.

|< Пред. 52 53 54 55 56 След. >|

Java книги

Контакты: [email protected]