Логическая игра   ::   Кэрролл Льюис

Страница: 17 из 62



Зато о другом квадрате – xy' – мы можем с уверенностью утверждать, что он (как и в предыдущем примере) занят.

Перенеся разметку на меньшую диаграмму, получим

что означает «Некоторые x суть y'».

Те же принципы применимы и ко всем другим половинкам большой диаграммы – вертикальным и горизонтальным. Например, чтобы представить на большой диаграмме суждение «Все y' суть m'», необходимо взять ее правую вертикальную половину (ту, которая отвечает признаку y') и разметить ее следующим образом

Если же мы захотим узнать, какое суждение (относительно x и y) содержится в нижней половине большой диаграммы, на которой нули и единицы расставлены так

то, преобразовав ее в малую диаграмму

мы без труда «расшифруем» скрытое в ней суждение: «Все x' суть y».

Относительно суждений необходимо сделать еще два замечания.

Во-первых, в каждом суждении, начинающемся со слов «некоторые» или «все», утверждается, что субъект суждения существует в действительности . Например, если я говорю: «Все скупые люди эгоистичны», то я подразумеваю что скупые люди существуют в действительности. Если бы я хотел избежать такого утверждения или только сформулировать правило , согласно которому скупость с необходимостью влечет за собой эгоизм, то я выразился бы иначе: «Ни один скупой человек не есть неэгоист». Это суждение не утверждает, что скупые люди вообще существуют. В нем лишь говорится, что если бы скупые люди существовали, то они были бы эгоистами.

|< Пред. 15 16 17 18 19 След. >|

Java книги

Контакты: [email protected]