Невероятно - не факт   ::   Китайгородский Александр Исаакович

Страница: 12 из 295



При бросании трех или даже двух костей сразу появляются проблемы, и можно уже задать, скажем, такой вопрос: какова вероятность появления двух шестёрок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестёрки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестёрок одновременно будет равна произведению двух вероятностей (1/6·1/6). Это пример так называемой теории умножения вероятностей. Но на этом новые проблемы не кончаются.

В начале XVII века к великому Галилею явился приятель, который захотел получить разъяснение по следующему поводу. Играя в три кости, он заметил, что число 10, как сумма очков на трех костях, появляется чаще, чем число 9. «Как же так, – спрашивал игрок, – ведь как в случае девятки, так и в случае десятки эти числа набираются одинаковым числом способов, а именно шестью?» Приятель был совершенно прав. Посмотрите на рисунок, на котором показано, как можно представить девятку и десятку в виде сумм.

Разбираясь в этом противоречии, Галилей решил одну из первых задач так называемой комбинаторики – основного инструмента расчётов вероятностей.

Итак, в чём же дело? А вот в чём.

Важно не то, как сумма разлагается на слагаемые, а сколько вариантов выпадения костей приводят к суммам в «девять» и «десять» очков. Галилей нашёл, что «десять» осуществляется 27 способами, а «девять» – 25. Эмпирическое наблюдение получило теоретическое истолкование.

|< Пред. 10 11 12 13 14 След. >|

Java книги

Контакты: [email protected]