Невероятно - не факт   ::   Китайгородский Александр Исаакович

Страница: 13 из 295

Что же это за разница между числом представлений суммы через слагаемые и числом вариантов выпада костей?

Вот на какую тонкость необходимо обратить внимание. Рассмотрим сначала случай, когда на трех костях три разные цифры, скажем 1, 2, и 6. Этот результат может осуществляться шестью вариантами: единица на первой кости, двойка на второй и шестёрка на третьей; единица на первой, шестёрка на второй, двойка на третьей; также возможны два случая, когда двойка окажется на первой кости и ещё два – когда на первой кости выпадет шестёрка (этот вариант приведён в таблице).

Иначе обстоит дело, когда сумма представлена таким образом, что два слагаемых одинаковые, например, 1 + 4 + 4. Только один вариант такого разложения появится, если на первой кости покажется единица, а на двух других четвёрки, ибо перестановка цифры на второй и третьей костях не даёт нового варианта. Второй вариант возникает, когда единичка покажется на второй кости, а третий, если она появится на третьей кости. Итого три возможности.

Наконец, ясно, что если сумма разложена на 3 + 3 + 3, то на костях такое событие осуществляется единственным способом.

В нашей таблице это число вариантов указано в скобках рядом с представлением суммы. Складывая числа в скобках, мы получим 25 и 27, которые нашёл Галилей. Вероятности появления на двух костях сумм 9 и 10 относятся как 25 к 27.

Это с виду простое объяснение не лежало на поверхности.

|< Пред. 11 12 13 14 15 След. >|

Java книги

Контакты: [email protected]