Онтология математического дискурса   ::   Гутнер Г Б

Страница: 80 из 170

Нефинитным является действительное число (о чем мы говорили выше), определяемое через бесконечную совокупность целых чисел (с. 64-67). Но анализ не ограничивается рассмотрением бесконечной совокупности целых чисел - он обращается к предметам "еще более нефинитным" (если можно так выразиться), рассматривая бесконечные совокупности действительных чисел в качестве актуально данных предметов. Рассуждения, используемые при этом, никак не могут апеллировать к наглядности. Естественно, что обращение к конструктивности, как критерию существования, оказывается бессмысленным для математического анализа. Говоря точнее, этот критерий заставляет считать названные (нефинитные) предметы своего рода химерами, странными измышлениями математиков, которые попросту не существуют.

Такой жесткий вывод и был, собственно, сделан интуиционистской школой, реализация программы которой состояла в значительном урезании всей математики. Намерение Гильберта было прямо противоположным: обосновать корректность тех частей математики, для которых существенно обращение к принципиально нефинитным предметам. Видимо это и обусловило его обращение к той интерпретации существования, которая была в свое время предложена Пуанкаре. Разработанный Гильбертом аксиоматический подход позволял достаточно ясно сформулировать, что означает свобода от противоречия в качестве критерия существования (см. выше - о существовании совокупности действительных чисел).

|< Пред. 78 79 80 81 82 След. >|

Java книги

Контакты: [email protected]